We describe a new boosting algorithm which generates only smooth distributions which do not assign too much weight to any single example. We show that this new boosting algorithm ...
This paper proposes a mechanism of noise tolerance for reinforcement learning algorithms. An adaptive agent that employs reinforcement learning algorithms may receive and accumula...
Richardson Ribeiro, Alessandro L. Koerich, Fabr&ia...
We discuss factors that affect human agreement on a semantic labeling task in the art history domain, based on the results of four experiments where we varied the number of labels...
Rebecca J. Passonneau, Thomas Lippincott, Tae Yano...
Image annotation datasets are becoming larger and larger, with tens of millions of images and tens of thousands of possible annotations. We propose a strongly performing method tha...
We give new algorithms for learning halfspaces in the challenging malicious noise model, where an adversary may corrupt both the labels and the underlying distribution of examples....
Adam R. Klivans, Philip M. Long, Rocco A. Servedio