We formulate the problem of graph inference where part of the graph is known as a supervised learning problem, and propose an algorithm to solve it. The method involves the learni...
During the last years, the use of string kernels that compare documents has been shown to achieve good results on text classification problems. In this paper we introduce the appl...
Kernel machines are a popular class of machine learning algorithms that achieve state of the art accuracies on many real-life classification problems. Kernel perceptrons are among...
We explore generic mechanisms to introduce structural hints into the method of Unsupervised Kernel Regression (UKR) in order to learn representations of data sequences in a semi-su...
Jan Steffen, Stefan Klanke, Sethu Vijayakumar, Hel...
High dimensional structured data such as text and images is often poorly understood and misrepresented in statistical modeling. The standard histogram representation suffers from ...