In this paper we apply a machine learning approach to the problem of estimating the number of defects called Regression via Classification (RvC). RvC initially automatically discr...
Stamatia Bibi, Grigorios Tsoumakas, Ioannis Stamel...
Abstract— This paper proposes a simulation-based active policy learning algorithm for finite-horizon, partially-observed sequential decision processes. The algorithm is tested i...
Ruben Martinez-Cantin, Nando de Freitas, Arnaud Do...
The scores returned by support vector machines are often used as a confidence measures in the classification of new examples. However, there is no theoretical argument sustaining ...
We introduce Hidden Process Models (HPMs), a class of probabilistic models for multivariate time series data. The design of HPMs has been motivated by the challenges of modeling h...
Rebecca Hutchinson, Tom M. Mitchell, Indrayana Rus...
In this paper we describe a new method to reduce the complexity of support vector machines by reducing the number of necessary support vectors included in their solutions. The red...