Sciweavers

990 search results - page 42 / 198
» Learning with non-positive kernels
Sort
View
SIGKDD
2000
139views more  SIGKDD 2000»
15 years 1 months ago
Support Vector Machines: Hype or Hallelujah?
Support Vector Machines (SVMs) and related kernel methods have become increasingly popular tools for data mining tasks such as classification, regression, and novelty detection. T...
Kristin P. Bennett, Colin Campbell
SIGPRO
2010
111views more  SIGPRO 2010»
14 years 8 months ago
Semi-supervised speaker identification under covariate shift
In this paper, we propose a novel semi-supervised speaker identification method that can alleviate the influence of non-stationarity such as session dependent variation, the recor...
Makoto Yamada, Masashi Sugiyama, Tomoko Matsui
IJCAI
2007
15 years 3 months ago
Kernel Conjugate Gradient for Fast Kernel Machines
We propose a novel variant of the conjugate gradient algorithm, Kernel Conjugate Gradient (KCG), designed to speed up learning for kernel machines with differentiable loss functio...
Nathan D. Ratliff, J. Andrew Bagnell
MCS
2010
Springer
15 years 8 months ago
Combining Multiple Kernels by Augmenting the Kernel Matrix
Abstract. In this paper we present a novel approach to combining multiple kernels where the kernels are computed from different information channels. In contrast to traditional me...
Fei Yan, Krystian Mikolajczyk, Josef Kittler, Muha...
ECML
2004
Springer
15 years 5 months ago
Efficient Hyperkernel Learning Using Second-Order Cone Programming
The kernel function plays a central role in kernel methods. Most existing methods can only adapt the kernel parameters or the kernel matrix based on empirical data. Recently, Ong e...
Ivor W. Tsang, James T. Kwok