Actor-Critic based approaches were among the first to address reinforcement learning in a general setting. Recently, these algorithms have gained renewed interest due to their gen...
This paper presents the design of an associative memory with feedback that is capable of on-line temporal sequence learning. A framework for on-line sequence learning has been prop...
Learning temporal causal graph structures from multivariate time-series data reveals important dependency relationships between current observations and histories, and provides a ...
Yan Liu 0002, Alexandru Niculescu-Mizil, Aurelie C...
We present four new reinforcement learning algorithms based on actor-critic and natural-gradient ideas, and provide their convergence proofs. Actor-critic reinforcement learning m...
Shalabh Bhatnagar, Richard S. Sutton, Mohammad Gha...
We investigate the problem of ordering medical events in unstructured clinical narratives by learning to rank them based on their time of occurrence. We represent each medical eve...
Preethi Raghavan, Albert M. Lai, Eric Fosler-Lussi...