We study geometric reconstruction problems in one-dimensional retina vision. In such problems, the scene is modeled as a 2D plane, and the camera sensor produces 1D images of the s...
Olof Enqvist, Fredrik Kahl, Carl Olsson, Kalle &Ar...
Dimension reduction is popular for learning predictive models in high-dimensional spaces. It can highlight the relevant part of the feature space and avoid the curse of dimensiona...
In this paper we introduce a novel approach to manifold alignment, based on Procrustes analysis. Our approach differs from "semisupervised alignment" in that it results ...
Dimensionality reduction via Random Projections has attracted considerable attention in recent years. The approach has interesting theoretical underpinnings and offers computation...
As an alternative to standard PCA, matrix-based image dimensionality reduction methods have recently been proposed and have gained attention due to reported computational efficie...