Sciweavers

1825 search results - page 11 / 365
» Local Dimensionality Reduction
Sort
View
NIPS
2004
14 years 11 months ago
Proximity Graphs for Clustering and Manifold Learning
Many machine learning algorithms for clustering or dimensionality reduction take as input a cloud of points in Euclidean space, and construct a graph with the input data points as...
Miguel Á. Carreira-Perpiñán, ...
NPL
1998
135views more  NPL 1998»
14 years 9 months ago
Local Adaptive Subspace Regression
Abstract. Incremental learning of sensorimotor transformations in high dimensional spaces is one of the basic prerequisites for the success of autonomous robot devices as well as b...
Sethu Vijayakumar, Stefan Schaal
NIPS
2003
14 years 11 months ago
Non-linear CCA and PCA by Alignment of Local Models
We propose a non-linear Canonical Correlation Analysis (CCA) method which works by coordinating or aligning mixtures of linear models. In the same way that CCA extends the idea of...
Jakob J. Verbeek, Sam T. Roweis, Nikos A. Vlassis
67
Voted
ICCV
2007
IEEE
15 years 11 months ago
Discriminant Embedding for Local Image Descriptors
Invariant feature descriptors such as SIFT and GLOH have been demonstrated to be very robust for image matching and visual recognition. However, such descriptors are generally par...
Gang Hua, Matthew Brown, Simon A. J. Winder
PR
2006
147views more  PR 2006»
14 years 9 months ago
Robust locally linear embedding
In the past few years, some nonlinear dimensionality reduction (NLDR) or nonlinear manifold learning methods have aroused a great deal of interest in the machine learning communit...
Hong Chang, Dit-Yan Yeung