Blocking probabilities in Wavelength Division Multiplex optical networks are hard to compute for realistic sized systems, even though analytical formulas for the distribution exis...
Abstract— Research on numerical solution methods for partially observable Markov decision processes (POMDPs) has primarily focused on discrete-state models, and these algorithms ...
Dimensionality reduction is an important issue when facing high-dimensional data. For supervised dimensionality reduction, Linear Discriminant Analysis (LDA) is one of the most po...
Feiping Nie, Shiming Xiang, Yangqiu Song, Changshu...
In this paper we present a new algorithm to transform an RGB color image to a grayscale image. We propose using non-linear dimension reduction techniques to map higher dimensional ...
Ming Cui, Jiuxiang Hu, Anshuman Razdan, Peter Wonk...
Clustering large data sets with high dimensionality is a challenging data-mining task. This paper presents a framework to perform such a task efficiently. It is based on the notio...
Ying Lai, Ratko Orlandic, Wai Gen Yee, Sachin Kulk...