Sciweavers

396 search results - page 13 / 80
» Lossy Reduction for Very High Dimensional Data
Sort
View
KDD
2001
ACM
253views Data Mining» more  KDD 2001»
16 years 3 days ago
GESS: a scalable similarity-join algorithm for mining large data sets in high dimensional spaces
The similarity join is an important operation for mining high-dimensional feature spaces. Given two data sets, the similarity join computes all tuples (x, y) that are within a dis...
Jens-Peter Dittrich, Bernhard Seeger
BMCBI
2010
224views more  BMCBI 2010»
14 years 12 months ago
An adaptive optimal ensemble classifier via bagging and rank aggregation with applications to high dimensional data
Background: Generally speaking, different classifiers tend to work well for certain types of data and conversely, it is usually not known a priori which algorithm will be optimal ...
Susmita Datta, Vasyl Pihur, Somnath Datta
ICML
2010
IEEE
15 years 24 days ago
The Elastic Embedding Algorithm for Dimensionality Reduction
We propose a new dimensionality reduction method, the elastic embedding (EE), that optimises an intuitive, nonlinear objective function of the low-dimensional coordinates of the d...
Miguel Á. Carreira-Perpiñán
ICANN
2009
Springer
15 years 4 months ago
Empirical Study of the Universum SVM Learning for High-Dimensional Data
Abstract. Many applications of machine learning involve sparse highdimensional data, where the number of input features is (much) larger than the number of data samples, d n. Predi...
Vladimir Cherkassky, Wuyang Dai
CVPR
2010
IEEE
15 years 7 months ago
Parametric Dimensionality Reduction by Unsupervised Regression
We introduce a parametric version (pDRUR) of the recently proposed Dimensionality Reduction by Unsupervised Regression algorithm. pDRUR alternately minimizes reconstruction error ...
Miguel Carreira-perpinan, Zhengdong Lu