Sciweavers

396 search results - page 13 / 80
» Lossy Reduction for Very High Dimensional Data
Sort
View
KDD
2001
ACM
253views Data Mining» more  KDD 2001»
15 years 9 months ago
GESS: a scalable similarity-join algorithm for mining large data sets in high dimensional spaces
The similarity join is an important operation for mining high-dimensional feature spaces. Given two data sets, the similarity join computes all tuples (x, y) that are within a dis...
Jens-Peter Dittrich, Bernhard Seeger
BMCBI
2010
224views more  BMCBI 2010»
14 years 9 months ago
An adaptive optimal ensemble classifier via bagging and rank aggregation with applications to high dimensional data
Background: Generally speaking, different classifiers tend to work well for certain types of data and conversely, it is usually not known a priori which algorithm will be optimal ...
Susmita Datta, Vasyl Pihur, Somnath Datta
ICML
2010
IEEE
14 years 10 months ago
The Elastic Embedding Algorithm for Dimensionality Reduction
We propose a new dimensionality reduction method, the elastic embedding (EE), that optimises an intuitive, nonlinear objective function of the low-dimensional coordinates of the d...
Miguel Á. Carreira-Perpiñán
ICANN
2009
Springer
15 years 2 months ago
Empirical Study of the Universum SVM Learning for High-Dimensional Data
Abstract. Many applications of machine learning involve sparse highdimensional data, where the number of input features is (much) larger than the number of data samples, d n. Predi...
Vladimir Cherkassky, Wuyang Dai
CVPR
2010
IEEE
15 years 5 months ago
Parametric Dimensionality Reduction by Unsupervised Regression
We introduce a parametric version (pDRUR) of the recently proposed Dimensionality Reduction by Unsupervised Regression algorithm. pDRUR alternately minimizes reconstruction error ...
Miguel Carreira-perpinan, Zhengdong Lu