Sciweavers

396 search results - page 17 / 80
» Lossy Reduction for Very High Dimensional Data
Sort
View
PAMI
2011
14 years 4 months ago
Multiple Kernel Learning for Dimensionality Reduction
—In solving complex visual learning tasks, adopting multiple descriptors to more precisely characterize the data has been a feasible way for improving performance. The resulting ...
Yen-Yu Lin, Tyng-Luh Liu, Chiou-Shann Fuh
NN
2010
Springer
183views Neural Networks» more  NN 2010»
14 years 8 months ago
Dimensionality reduction for density ratio estimation in high-dimensional spaces
The ratio of two probability density functions is becoming a quantity of interest these days in the machine learning and data mining communities since it can be used for various d...
Masashi Sugiyama, Motoaki Kawanabe, Pui Ling Chui
ICML
2004
IEEE
15 years 2 months ago
Learning a kernel matrix for nonlinear dimensionality reduction
We investigate how to learn a kernel matrix for high dimensional data that lies on or near a low dimensional manifold. Noting that the kernel matrix implicitly maps the data into ...
Kilian Q. Weinberger, Fei Sha, Lawrence K. Saul
BMCBI
2007
123views more  BMCBI 2007»
14 years 9 months ago
Robust clustering in high dimensional data using statistical depths
Background: Mean-based clustering algorithms such as bisecting k-means generally lack robustness. Although componentwise median is a more robust alternative, it can be a poor cent...
Yuanyuan Ding, Xin Dang, Hanxiang Peng, Dawn Wilki...
SDM
2003
SIAM
184views Data Mining» more  SDM 2003»
14 years 10 months ago
Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data
The problem of finding clusters in data is challenging when clusters are of widely differing sizes, densities and shapes, and when the data contains large amounts of noise and out...
Levent Ertöz, Michael Steinbach, Vipin Kumar