A serious drawback of kernel methods, and Support Vector Machines (SVM) in particular, is the difficulty in choosing a suitable kernel function for a given dataset. One of the appr...
Huyen Do, Alexandros Kalousis, Adam Woznica, Melan...
Background: A number of methods that use both protein structural and evolutionary information are available to predict the functional consequences of missense mutations. However, ...
Chris J. Needham, James R. Bradford, Andrew J. Bul...
Models such as pairwise conditional random fields (CRFs) are extremely popular in computer vision and various other machine learning disciplines. However, they have limited expre...
We address the problem of learning a kernel for a given supervised learning task. Our approach consists in searching within the convex hull of a prescribed set of basic kernels fo...
Andreas Argyriou, Raphael Hauser, Charles A. Micch...
This paper introduces a machine learning approach into the process of direct volume rendering of biomedical highresolution 3D images. More concretely, it proposes a learning pipel...