We describe a new approach for understanding the difficulty of designing efficient learning algorithms. We prove that the existence of an efficient learning algorithm for a circui...
We consider visual category recognition in the framework of measuring similarities, or equivalently perceptual distances, to prototype examples of categories. This approach is qui...
Alexander C. Berg, Hao Zhang 0003, Jitendra Malik,...
We give a universal kernel that renders all the regular languages linearly separable. We are not able to compute this kernel efficiently and conjecture that it is intractable, but...
We consider a natural framework of learning from correlated data, in which successive examples used for learning are generated according to a random walk over the space of possibl...
Ariel Elbaz, Homin K. Lee, Rocco A. Servedio, Andr...
In this paper we argue that the use of a language with a type system, together with higher-order facilities and functions, provides a suitable basis for knowledge representation in...
Peter A. Flach, Christophe G. Giraud-Carrier, John...