Although kernel measures of independence have been widely applied in machine learning (notably in kernel ICA), there is as yet no method to determine whether they have detected st...
Arthur Gretton, Kenji Fukumizu, Choon Hui Teo, Le ...
500,000 PubMed abstracts. However, less than 50 documents are relevant for most queries. Applying scoring to all 500,000 abstracts would create a lot of noise. In the first step, ...
: This paper presents a feature selection technique based on distributional differences for efficient machine learning. Initial training data consists of data including many featur...
This paper presents an online support vector machine (SVM) that uses the stochastic meta-descent (SMD) algorithm to adapt its step size automatically. We formulate the online lear...
S. V. N. Vishwanathan, Nicol N. Schraudolph, Alex ...
Abstract. Subspace mapping methods aim at projecting high-dimensional data into a subspace where a specific objective function is optimized. Such dimension reduction allows the re...
Axel J. Soto, Marc Strickert, Gustavo E. Vazquez, ...