Sciweavers

3668 search results - page 36 / 734
» Margin Distribution and Learning
Sort
View
ICPR
2008
IEEE
15 years 6 months ago
Semi-supervised marginal discriminant analysis based on QR decomposition
In this paper, a novel subspace learning method, semi-supervised marginal discriminant analysis (SMDA), is proposed for classification. SMDA aims at maintaining the intrinsic neig...
Rui Xiao, Pengfei Shi
PAMI
2010
276views more  PAMI 2010»
14 years 10 months ago
Local-Learning-Based Feature Selection for High-Dimensional Data Analysis
—This paper considers feature selection for data classification in the presence of a huge number of irrelevant features. We propose a new feature selection algorithm that addres...
Yijun Sun, Sinisa Todorovic, Steve Goodison
COLT
2008
Springer
15 years 1 months ago
Dimension and Margin Bounds for Reflection-invariant Kernels
A kernel over the Boolean domain is said to be reflection-invariant, if its value does not change when we flip the same bit in both arguments. (Many popular kernels have this prop...
Thorsten Doliwa, Michael Kallweit, Hans-Ulrich Sim...
ICDM
2002
IEEE
133views Data Mining» more  ICDM 2002»
15 years 4 months ago
Learning with Progressive Transductive Support Vector Machine
Support vector machine (SVM) is a new learning method developed in recent years based on the foundations of statistical learning theory. By taking a transductive approach instead ...
Yisong Chen, Guoping Wang, Shihai Dong
JMLR
2006
186views more  JMLR 2006»
14 years 11 months ago
Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples
We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semi-supervised...
Mikhail Belkin, Partha Niyogi, Vikas Sindhwani