We present a novel method for clustering using the support vector machine approach. Data points are mapped to a high dimensional feature space, where support vectors are used to d...
Asa Ben-Hur, David Horn, Hava T. Siegelmann, Vladi...
We present a novel method for clustering using the support vector machine approach. Data points are mapped to a high dimensional feature space, where support vectors are used to d...
Abstract. This paper describes a novel fuzzy rule-based modeling approach for some slow industrial processses. Structure identification is realized by clustering and support vecto...
Understanding the sequence-to-structure relationship is a central task in bioinformatics research. Adequate knowledge about this relationship can potentially improve accuracy for ...
Wei Zhong, Jieyue He, Robert W. Harrison, Phang C....
In this paper, we propose a new approach to detect activated time series in functional MRI using support vector clustering (SVC). We extract Fourier coefficients as the features of...
Defeng Wang, Lin Shi, Daniel S. Yeung, Pheng-Ann H...