We present a technique for computing approximately optimal solutions to stochastic resource allocation problems modeled as Markov decision processes (MDPs). We exploit two key pro...
Nicolas Meuleau, Milos Hauskrecht, Kee-Eung Kim, L...
— We consider opportunistic spectrum access (OSA) which allows secondary users to identify and exploit instantaneous spectrum opportunities resulting from the bursty traffic of ...
—This paper presents a method for learning decision theoretic models of human behaviors from video data. Our system learns relationships between the movements of a person, the co...
Recent decision-theoric planning algorithms are able to find optimal solutions in large problems, using Factored Markov Decision Processes (fmdps). However, these algorithms need ...
Thomas Degris, Olivier Sigaud, Pierre-Henri Wuille...
Recent research in decision theoretic planning has focussedon making the solution of Markov decision processes (MDPs) more feasible. We develop a family of algorithms for structur...
Craig Boutilier, Ronen I. Brafman, Christopher W. ...