Sciweavers

35 search results - page 1 / 7
» Maximum Matchings in Regular Graphs of High Girth
Sort
View
73
Voted
COMBINATORICS
2007
88views more  COMBINATORICS 2007»
14 years 10 months ago
Maximum Matchings in Regular Graphs of High Girth
Let G = (V, E) be any d-regular graph with girth g on n vertices, for d ≥ 3. This note shows that G has a maximum matching which includes all but an exponentially small fraction...
Abraham D. Flaxman, Shlomo Hoory
JCT
2007
93views more  JCT 2007»
14 years 10 months ago
The circular chromatic index of graphs of high girth
We show that for each ε > 0 and each integer ∆ ≥ 1, there exists a number g such that for any graph G of maximum degree ∆ and girth at least g, the circular chromatic in...
Tomás Kaiser, Daniel Král, Riste Skr...
ARSCOM
2007
77views more  ARSCOM 2007»
14 years 10 months ago
Extremal bipartite graphs with high girth
Let us denote by EX (m, n; {C4, . . . , C2t}) the family of bipartite graphs G with m and n vertices in its classes that contain no cycles of length less than or equal to 2t and h...
Camino Balbuena, Pedro García-Vázque...
ALGORITHMICA
2002
159views more  ALGORITHMICA 2002»
14 years 10 months ago
Algorithmic Aspects of Acyclic Edge Colorings
A proper coloring of the edges of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G, denoted by a (G), is the least number of...
Noga Alon, Ayal Zaks