Abstract. Coordination graphs offer a tractable framework for cooperative multiagent decision making by decomposing the global payoff function into a sum of local terms. Each age...
Monte Carlo methods and their subsequent simulated annealing are able to minimize general energy functions. However, the slow convergence of simulated annealing compared with more ...
Markov random fields are designed to represent structured dependencies among large collections of random variables, and are well-suited to capture the structure of real-world sign...
Tanya Roosta, Martin J. Wainwright, Shankar S. Sas...
A large number of problems in computer vision can be modeled as energy minimization problems in a markov random field (MRF) framework. Many methods have been developed over the y...
Vibhav Vineet, Jonathan Warrell, Philip H. S. Torr
Maximum a posteriori (MAP) inference in Markov Random Fields (MRFs) is an NP-hard problem, and thus research has focussed on either finding efficiently solvable subclasses (e.g. t...
Dhruv Batra, Andrew Gallagher, Devi Parikh, Tsuhan...