Sciweavers

403 search results - page 27 / 81
» Metric and Kernel Learning Using a Linear Transformation
Sort
View
ICCV
2007
IEEE
15 years 8 months ago
Laplacian PCA and Its Applications
Dimensionality reduction plays a fundamental role in data processing, for which principal component analysis (PCA) is widely used. In this paper, we develop the Laplacian PCA (LPC...
Deli Zhao, Zhouchen Lin, Xiaoou Tang
CVPR
2010
IEEE
15 years 10 months ago
Online-Batch Strongly Convex Multi Kernel Learning
Several object categorization algorithms use kernel methods over multiple cues, as they offer a principled approach to combine multiple cues, and to obtain state-of-theart perform...
Francesco Orabona, Jie Luo, Barbara Caputo
CORR
2008
Springer
100views Education» more  CORR 2008»
15 years 1 months ago
Learning Isometric Separation Maps
Maximum Variance Unfolding (MVU) and its variants have been very successful in embedding data-manifolds in lower dimensionality spaces, often revealing the true intrinsic dimensio...
Nikolaos Vasiloglou, Alexander G. Gray, David V. A...
RIVF
2008
15 years 3 months ago
Simple but effective methods for combining kernels in computational biology
Complex biological data generated from various experiments are stored in diverse data types in multiple datasets. By appropriately representing each biological dataset as a kernel ...
Hiroaki Tanabe, Tu Bao Ho, Canh Hao Nguyen, Saori ...
141
Voted
IJCNN
2007
IEEE
15 years 8 months ago
Generalised Kernel Machines
Abstract— The generalised linear model (GLM) is the standard approach in classical statistics for regression tasks where it is appropriate to measure the data misfit using a lik...
Gavin C. Cawley, Gareth J. Janacek, Nicola L. C. T...