From a conceptual point of view, belief revision and learning are quite similar. Both methods change the belief state of an intelligent agent by processing incoming information. Ho...
Thomas Leopold, Gabriele Kern-Isberner, Gabriele P...
Recent advancements in model-based reinforcement learning have shown that the dynamics of many structured domains (e.g. DBNs) can be learned with tractable sample complexity, desp...
Thomas J. Walsh, Sergiu Goschin, Michael L. Littma...
Abstract. In both research fields, Case-Based Reasoning and Reinforcement Learning, the system under consideration gains its expertise from experience. Utilizing this fundamental c...
Temporal difference reinforcement learning algorithms are perfectly suited to autonomous agents because they learn directly from an agent’s experience based on sequential actio...
This paper highlights the crucial role that modern machine learning techniques can play in the optimization of treatment strategies for patients with chronic disorders. In particu...
Arthur Guez, Robert D. Vincent, Massimo Avoli, Joe...