Background: Gene expression microarray and other multiplex data hold promise for addressing the challenges of cellular complexity, refined diagnoses and the discovery of well-targ...
Abdallah Sayyed-Ahmad, Kagan Tuncay, Peter J. Orto...
Background: Microarray technology has made it possible to simultaneously measure the expression levels of large numbers of genes in a short time. Gene expression data is informati...
Abstract. This paper present a new approach for the analysis of gene expression, by extracting a Markov Chain from trained Recurrent Neural Networks (RNNs). A lot of microarray dat...
Igor Lorenzato Almeida, Denise Regina Pechmann Sim...
Background: Cluster analyses are used to analyze microarray time-course data for gene discovery and pattern recognition. However, in general, these methods do not take advantage o...
Hua Liu, Sergey Tarima, Aaron S. Borders, Thomas V...
Background: Non-linearities in observed log-ratios of gene expressions, also known as intensity dependent log-ratios, can often be accounted for by global biases in the two channe...