Sciweavers

78 search results - page 4 / 16
» Mining concept-drifting data streams using ensemble classifi...
Sort
View
ASC
2008
14 years 9 months ago
Info-fuzzy algorithms for mining dynamic data streams
Most data mining algorithms assume static behavior of the incoming data. In the real world, the situation is different and most continuously collected data streams are generated by...
Lior Cohen, Gil Avrahami, Mark Last, Abraham Kande...
71
Voted
DIS
2004
Springer
15 years 2 months ago
Mining Noisy Data Streams via a Discriminative Model
The two main challenges typically associated with mining data streams are concept drift and data contamination. To address these challenges, we seek learning techniques and models ...
Fang Chu, Yizhou Wang, Carlo Zaniolo
94
Voted
PKDD
2005
Springer
101views Data Mining» more  PKDD 2005»
15 years 3 months ago
A Random Method for Quantifying Changing Distributions in Data Streams
In applications such as fraud and intrusion detection, it is of great interest to measure the evolving trends in the data. We consider the problem of quantifying changes between tw...
Haixun Wang, Jian Pei
CIKM
2010
Springer
14 years 8 months ago
Partial drift detection using a rule induction framework
The major challenge in mining data streams is the issue of concept drift, the tendency of the underlying data generation process to change over time. In this paper, we propose a g...
Damon Sotoudeh, Aijun An
COMAD
2009
14 years 10 months ago
Categorizing Concepts for Detecting Drifts in Stream
Mining evolving data streams for concept drifts has gained importance in applications like customer behavior analysis, network intrusion detection, credit card fraud detection. Se...
Sharanjit Kaur, Vasudha Bhatnagar, Sameep Mehta, S...