Sciweavers

113 search results - page 9 / 23
» Model Approximation for HEXQ Hierarchical Reinforcement Lear...
Sort
View
ICML
2006
IEEE
16 years 2 months ago
Using inaccurate models in reinforcement learning
In the model-based policy search approach to reinforcement learning (RL), policies are found using a model (or "simulator") of the Markov decision process. However, for ...
Pieter Abbeel, Morgan Quigley, Andrew Y. Ng
PKDD
2010
Springer
179views Data Mining» more  PKDD 2010»
14 years 11 months ago
Gaussian Processes for Sample Efficient Reinforcement Learning with RMAX-Like Exploration
Abstract. We present an implementation of model-based online reinforcement learning (RL) for continuous domains with deterministic transitions that is specifically designed to achi...
Tobias Jung, Peter Stone
ECAI
2008
Springer
15 years 3 months ago
Exploiting locality of interactions using a policy-gradient approach in multiagent learning
In this paper, we propose a policy gradient reinforcement learning algorithm to address transition-independent Dec-POMDPs. This approach aims at implicitly exploiting the locality...
Francisco S. Melo
ATAL
2008
Springer
15 years 3 months ago
Reinforcement learning for DEC-MDPs with changing action sets and partially ordered dependencies
Decentralized Markov decision processes are frequently used to model cooperative multi-agent systems. In this paper, we identify a subclass of general DEC-MDPs that features regul...
Thomas Gabel, Martin A. Riedmiller
ATAL
2008
Springer
15 years 3 months ago
Sigma point policy iteration
In reinforcement learning, least-squares temporal difference methods (e.g., LSTD and LSPI) are effective, data-efficient techniques for policy evaluation and control with linear v...
Michael H. Bowling, Alborz Geramifard, David Winga...