A new algorithm for context modeling of binary sources with application to video compression is presented. Our proposed method is based on a tree rearrangement and tree selection ...
Often the best performing supervised learning models are ensembles of hundreds or thousands of base-level classifiers. Unfortunately, the space required to store this many classif...
Cristian Bucila, Rich Caruana, Alexandru Niculescu...
Abstract--Modeling background and segmenting moving objects are significant techniques for video surveillance and other video processing applications. Most existing methods of mode...
Compressive sensing aims to recover a sparse or compressible signal from a small set of projections onto random vectors; conventional solutions involve linear programming or greed...
Marco F. Duarte, Michael B. Wakin, Richard G. Bara...
Compressive sensing (CS) is an alternative to Shannon/Nyquist sampling for acquisition of sparse or compressible signals that can be well approximated by just K N elements from a...
Richard G. Baraniuk, Volkan Cevher, Marco F. Duart...