Sciweavers

215 search results - page 5 / 43
» Model-Based Reinforcement Learning with Continuous States an...
Sort
View
ICML
2006
IEEE
16 years 2 months ago
PAC model-free reinforcement learning
For a Markov Decision Process with finite state (size S) and action spaces (size A per state), we propose a new algorithm--Delayed Q-Learning. We prove it is PAC, achieving near o...
Alexander L. Strehl, Lihong Li, Eric Wiewiora, Joh...
AROBOTS
1999
104views more  AROBOTS 1999»
15 years 1 months ago
Reinforcement Learning Soccer Teams with Incomplete World Models
We use reinforcement learning (RL) to compute strategies for multiagent soccer teams. RL may pro t signi cantly from world models (WMs) estimating state transition probabilities an...
Marco Wiering, Rafal Salustowicz, Jürgen Schm...
ICANN
2010
Springer
15 years 2 months ago
Exploring Continuous Action Spaces with Diffusion Trees for Reinforcement Learning
We propose a new approach for reinforcement learning in problems with continuous actions. Actions are sampled by means of a diffusion tree, which generates samples in the continuou...
Christian Vollmer, Erik Schaffernicht, Horst-Micha...
ICML
2003
IEEE
16 years 2 months ago
Hierarchical Policy Gradient Algorithms
Hierarchical reinforcement learning is a general framework which attempts to accelerate policy learning in large domains. On the other hand, policy gradient reinforcement learning...
Mohammad Ghavamzadeh, Sridhar Mahadevan
ICML
1996
IEEE
15 years 5 months ago
A Convergent Reinforcement Learning Algorithm in the Continuous Case: The Finite-Element Reinforcement Learning
This paper presents a direct reinforcement learning algorithm, called Finite-Element Reinforcement Learning, in the continuous case, i.e. continuous state-space and time. The eval...
Rémi Munos