Sciweavers

139 search results - page 14 / 28
» Model-based function approximation in reinforcement learning
Sort
View
NIPS
2008
15 years 1 months ago
Regularized Policy Iteration
In this paper we consider approximate policy-iteration-based reinforcement learning algorithms. In order to implement a flexible function approximation scheme we propose the use o...
Amir Massoud Farahmand, Mohammad Ghavamzadeh, Csab...
NIPS
1996
15 years 1 months ago
Multidimensional Triangulation and Interpolation for Reinforcement Learning
Dynamic Programming, Q-learning and other discrete Markov Decision Process solvers can be applied to continuous d-dimensional state-spaces by quantizing the state space into an arr...
Scott Davies
ECAI
2008
Springer
15 years 1 months ago
Exploiting locality of interactions using a policy-gradient approach in multiagent learning
In this paper, we propose a policy gradient reinforcement learning algorithm to address transition-independent Dec-POMDPs. This approach aims at implicitly exploiting the locality...
Francisco S. Melo
PKDD
2009
Springer
152views Data Mining» more  PKDD 2009»
15 years 6 months ago
Feature Selection for Value Function Approximation Using Bayesian Model Selection
Abstract. Feature selection in reinforcement learning (RL), i.e. choosing basis functions such that useful approximations of the unkown value function can be obtained, is one of th...
Tobias Jung, Peter Stone
ESANN
2004
15 years 1 months ago
High-accuracy value-function approximation with neural networks applied to the acrobot
Several reinforcement-learning techniques have already been applied to the Acrobot control problem, using linear function approximators to estimate the value function. In this pape...
Rémi Coulom