Sciweavers

139 search results - page 16 / 28
» Model-based function approximation in reinforcement learning
Sort
View
NIPS
2001
15 years 1 months ago
Variance Reduction Techniques for Gradient Estimates in Reinforcement Learning
Policy gradient methods for reinforcement learning avoid some of the undesirable properties of the value function approaches, such as policy degradation (Baxter and Bartlett, 2001...
Evan Greensmith, Peter L. Bartlett, Jonathan Baxte...
CDC
2010
IEEE
160views Control Systems» more  CDC 2010»
14 years 6 months ago
Adaptive bases for Q-learning
Abstract-- We consider reinforcement learning, and in particular, the Q-learning algorithm in large state and action spaces. In order to cope with the size of the spaces, a functio...
Dotan Di Castro, Shie Mannor
UAI
2008
15 years 1 months ago
Dyna-Style Planning with Linear Function Approximation and Prioritized Sweeping
We consider the problem of efficiently learning optimal control policies and value functions over large state spaces in an online setting in which estimates must be available afte...
Richard S. Sutton, Csaba Szepesvári, Alborz...
AAAI
1998
15 years 1 months ago
Applying Online Search Techniques to Continuous-State Reinforcement Learning
In this paper, we describe methods for e ciently computing better solutions to control problems in continuous state spaces. We provide algorithms that exploit online search to boo...
Scott Davies, Andrew Y. Ng, Andrew W. Moore
ILP
2003
Springer
15 years 5 months ago
Graph Kernels and Gaussian Processes for Relational Reinforcement Learning
RRL is a relational reinforcement learning system based on Q-learning in relational state-action spaces. It aims to enable agents to learn how to act in an environment that has no ...
Thomas Gärtner, Kurt Driessens, Jan Ramon