Sciweavers

139 search results - page 4 / 28
» Model-based function approximation in reinforcement learning
Sort
View
ICML
1996
IEEE
15 years 1 months ago
A Convergent Reinforcement Learning Algorithm in the Continuous Case: The Finite-Element Reinforcement Learning
This paper presents a direct reinforcement learning algorithm, called Finite-Element Reinforcement Learning, in the continuous case, i.e. continuous state-space and time. The eval...
Rémi Munos
ICML
1995
IEEE
15 years 10 months ago
Residual Algorithms: Reinforcement Learning with Function Approximation
A number of reinforcement learning algorithms have been developed that are guaranteed to converge to the optimal solution when used with lookup tables. It is shown, however, that ...
Leemon C. Baird III
66
Voted
AAMAS
2007
Springer
14 years 9 months ago
Parallel Reinforcement Learning with Linear Function Approximation
In this paper, we investigate the use of parallelization in reinforcement learning (RL), with the goal of learning optimal policies for single-agent RL problems more quickly by us...
Matthew Grounds, Daniel Kudenko
ATAL
2005
Springer
15 years 3 months ago
Improving reinforcement learning function approximators via neuroevolution
Reinforcement learning problems are commonly tackled with temporal difference methods, which use dynamic programming and statistical sampling to estimate the long-term value of ta...
Shimon Whiteson
ICCBR
2005
Springer
15 years 3 months ago
CBR for State Value Function Approximation in Reinforcement Learning
CBR is one of the techniques that can be applied to the task of approximating a function over high-dimensional, continuous spaces. In Reinforcement Learning systems a learning agen...
Thomas Gabel, Martin A. Riedmiller