Sciweavers

139 search results - page 7 / 28
» Model-based function approximation in reinforcement learning
Sort
View
59
Voted
ICML
2007
IEEE
15 years 10 months ago
Automatic shaping and decomposition of reward functions
This paper investigates the problem of automatically learning how to restructure the reward function of a Markov decision process so as to speed up reinforcement learning. We begi...
Bhaskara Marthi
IAT
2003
IEEE
15 years 2 months ago
Asymmetric Multiagent Reinforcement Learning
A gradient-based method for both symmetric and asymmetric multiagent reinforcement learning is introduced in this paper. Symmetric multiagent reinforcement learning addresses the ...
Ville Könönen
80
Voted
ICRA
2009
IEEE
143views Robotics» more  ICRA 2009»
15 years 4 months ago
Least absolute policy iteration for robust value function approximation
Abstract— Least-squares policy iteration is a useful reinforcement learning method in robotics due to its computational efficiency. However, it tends to be sensitive to outliers...
Masashi Sugiyama, Hirotaka Hachiya, Hisashi Kashim...
90
Voted
ESANN
2008
14 years 11 months ago
Multilayer Perceptrons with Radial Basis Functions as Value Functions in Reinforcement Learning
Using multilayer perceptrons (MLPs) to approximate the state-action value function in reinforcement learning (RL) algorithms could become a nightmare due to the constant possibilit...
Victor Uc Cetina
ICML
2001
IEEE
15 years 10 months ago
Off-Policy Temporal Difference Learning with Function Approximation
We introduce the first algorithm for off-policy temporal-difference learning that is stable with linear function approximation. Off-policy learning is of interest because it forms...
Doina Precup, Richard S. Sutton, Sanjoy Dasgupta