Sciweavers

139 search results - page 8 / 28
» Model-based function approximation in reinforcement learning
Sort
View
ICMLA
2008
14 years 11 months ago
Basis Function Construction in Reinforcement Learning Using Cascade-Correlation Learning Architecture
In reinforcement learning, it is a common practice to map the state(-action) space to a different one using basis functions. This transformation aims to represent the input data i...
Sertan Girgin, Philippe Preux
EWRL
2008
14 years 11 months ago
Bayesian Reward Filtering
A wide variety of function approximation schemes have been applied to reinforcement learning. However, Bayesian filtering approaches, which have been shown efficient in other field...
Matthieu Geist, Olivier Pietquin, Gabriel Fricout
144
Voted

Publication
334views
15 years 6 months ago
Rollout Sampling Approximate Policy Iteration
Several researchers have recently investigated the connection between reinforcement learning and classification. We are motivated by proposals of approximate policy iteration schem...
Christos Dimitrakakis, Michail G. Lagoudakis
ECML
2005
Springer
15 years 3 months ago
Model-Based Online Learning of POMDPs
Abstract. Learning to act in an unknown partially observable domain is a difficult variant of the reinforcement learning paradigm. Research in the area has focused on model-free m...
Guy Shani, Ronen I. Brafman, Solomon Eyal Shimony
CCIA
2005
Springer
15 years 3 months ago
Direct Policy Search Reinforcement Learning for Robot Control
— This paper proposes a high-level Reinforcement Learning (RL) control system for solving the action selection problem of an autonomous robot. Although the dominant approach, whe...
Andres El-Fakdi, Marc Carreras, Narcís Palo...