This paper is concerned with bridging the gap between requirements, provided as a set of scenarios, and conforming design models. The novel aspect of our approach is to exploit lea...
Probabilistic Decision Graphs (PDGs) are a class of graphical models that can naturally encode some context specific independencies that cannot always be efficiently captured by...
It is generally assumed in the traditional formulation of supervised learning that only the outputs data are uncertain. However, this assumption might be too strong for some learni...
Patrick Dallaire, Camille Besse, Brahim Chaib-draa
Previous work has shown that the difficulties in learning deep generative or discriminative models can be overcome by an initial unsupervised learning step that maps inputs to use...
Pascal Vincent, Hugo Larochelle, Yoshua Bengio, Pi...
In this paper we present a novel scheme for unstructured audio scene classification that possesses three highly desirable and powerful features: autonomy, scalability, and robust...
Julian Ramos, Sajid M. Siddiqi, Artur Dubrawski, G...