We address the problem of label assignment in computer
vision: given a novel 3-D or 2-D scene, we wish to assign a
unique label to every site (voxel, pixel, superpixel, etc.). To...
Daniel Munoz, James A. Bagnell, Martial Hebert, Ni...
This paper presents a method of learning and recognizing generic object categories using part-based spatial models. The models are multiscale, with a scene component that specifie...
In this paper we present a novel method for parsing aerial images with a hierarchical and contextual model learned in a statistical framework. We learn hierarchies at the scene an...
Jake Porway, Kristy Wang, Benjamin Yao, Song Chun ...
We describe an ensemble approach to learning1 salient regions from data partitioned according to the2 distributed processing requirements of large-scale sim-3 ulations. The volume...
Larry Shoemaker, Robert E. Banfield, Larry O. Hall...
We consider the problem of estimating the policy gradient in Partially Observable Markov Decision Processes (POMDPs) with a special class of policies that are based on Predictive ...