In recent years there has been a lot of interest in designing principled classification algorithms over multiple cues, based on the intuitive notion that using more features shou...
A serious drawback of kernel methods, and Support Vector Machines (SVM) in particular, is the difficulty in choosing a suitable kernel function for a given dataset. One of the appr...
Huyen Do, Alexandros Kalousis, Adam Woznica, Melan...
For supervised and unsupervised learning, positive definite kernels allow to use large and potentially infinite dimensional feature spaces with a computational cost that only depe...
Kernel methods have been successfully applied to many machine learning problems. Nevertheless, since the performance of kernel methods depends heavily on the type of kernels being...
Tianbao Yang, Mehrdad Mahdavi, Rong Jin, Jinfeng Y...
Abstract: Kernel classifiers based on Support Vector Machines (SVM) have achieved state-ofthe-art results in several visual classification tasks, however, recent publications and d...
Guo ShengYang, Min Tan, Si-Yao Fu, Zeng-Guang Hou,...