We propose a novel approach to learn and recognize natural scene categories. Unlike previous work [9, 17], it does not require experts to annotate the training set. We represent t...
Fei-Fei Li 0002, Pietro Perona, California Institu...
We propose a novel Bayesian learning framework of hierarchical mixture model by incorporating prior hierarchical knowledge into concept representations of multi-level concept struc...
We consider the exploration/exploitation problem in reinforcement learning (RL). The Bayesian approach to model-based RL offers an elegant solution to this problem, by considering...
We propose a new approach for reinforcement learning in problems with continuous actions. Actions are sampled by means of a diffusion tree, which generates samples in the continuou...
Christian Vollmer, Erik Schaffernicht, Horst-Micha...
When related learning tasks are naturally arranged in a hierarchy, an appealing approach for coping with scarcity of instances is that of transfer learning using a hierarchical Ba...
Gal Elidan, Benjamin Packer, Geremy Heitz, Daphne ...