Sciweavers

70 search results - page 2 / 14
» Multiple Kernel Learning for Dimensionality Reduction
Sort
View
WEBI
2010
Springer
14 years 11 months ago
DSP: Robust Semi-supervised Dimensionality Reduction Using Dual Subspace Projections
High-dimensional data usually incur learning deficiencies and computational difficulties. We present a novel semi-supervised dimensionality reduction technique that embeds high-dim...
Su Yan, Sofien Bouaziz, Dongwon Lee
NIPS
2003
15 years 3 months ago
Kernel Dimensionality Reduction for Supervised Learning
We propose a novel method of dimensionality reduction for supervised learning. Given a regression or classification problem in which we wish to predict a variable Y from an expla...
Kenji Fukumizu, Francis R. Bach, Michael I. Jordan
ICIP
2005
IEEE
16 years 3 months ago
Nonlinear dimensionality reduction for classification using kernel weighted subspace method
We study the use of kernel subspace methods that learn low-dimensional subspace representations for classification tasks. In particular, we propose a new method called kernel weigh...
Guang Dai, Dit-Yan Yeung
ICDM
2003
IEEE
153views Data Mining» more  ICDM 2003»
15 years 7 months ago
Dimensionality Reduction Using Kernel Pooled Local Discriminant Information
We study the use of kernel subspace methods for learning low-dimensional representations for classification. We propose a kernel pooled local discriminant subspace method and com...
Peng Zhang, Jing Peng, Carlotta Domeniconi
126
Voted
ICML
2007
IEEE
16 years 2 months ago
Dimensionality reduction and generalization
In this paper we investigate the regularization property of Kernel Principal Component Analysis (KPCA), by studying its application as a preprocessing step to supervised learning ...
Sofia Mosci, Lorenzo Rosasco, Alessandro Verri