Sciweavers

299 search results - page 11 / 60
» Multiple kernel learning and feature space denoising
Sort
View
NIPS
2004
15 years 1 months ago
The Laplacian PDF Distance: A Cost Function for Clustering in a Kernel Feature Space
A new distance measure between probability density functions (pdfs) is introduced, which we refer to as the Laplacian pdf distance. The Laplacian pdf distance exhibits a remarkabl...
Robert Jenssen, Deniz Erdogmus, José Carlos...
EMNLP
2009
14 years 9 months ago
Reverse Engineering of Tree Kernel Feature Spaces
We present a framework to extract the most important features (tree fragments) from a Tree Kernel (TK) space according to their importance in the target kernelbased machine, e.g. ...
Daniele Pighin, Alessandro Moschitti
JMLR
2006
156views more  JMLR 2006»
14 years 11 months ago
Large Scale Multiple Kernel Learning
While classical kernel-based learning algorithms are based on a single kernel, in practice it is often desirable to use multiple kernels. Lanckriet et al. (2004) considered conic ...
Sören Sonnenburg, Gunnar Rätsch, Christi...
ICML
2006
IEEE
16 years 15 days ago
Optimal kernel selection in Kernel Fisher discriminant analysis
In Kernel Fisher discriminant analysis (KFDA), we carry out Fisher linear discriminant analysis in a high dimensional feature space defined implicitly by a kernel. The performance...
Seung-Jean Kim, Alessandro Magnani, Stephen P. Boy...
VIP
2003
15 years 1 months ago
Tracking Using CamShift Algorithm and Multiple Quantized Feature Spaces
The Continuously Adaptive Mean Shift Algorithm (CamShift) is an adaptation of the Mean Shift algorithm for object tracking that is intended as a step towards head and face trackin...
John G. Allen, Richard Y. D. Xu, Jesse S. Jin