With recent advances in sensory and mobile computing technology, enormous amounts of data about moving objects are being collected. One important application with such data is aut...
Xiaolei Li, Jiawei Han, Sangkyum Kim, Hector Gonza...
Typical approaches to multi-label classification problem require learning an independent classifier for every label from all the examples and features. This can become a computati...
In developing automated systems to recognize the emotional content of music, we are faced with a problem spanning two disparate domains: the space of human emotions and the acoust...
Erik M. Schmidt, Douglas Turnbull, Youngmoo E. Kim
Although support vector machines (SVMs) for binary classification give rise to a decision rule that only relies on a subset of the training data points (support vectors), it will ...
Antoni B. Chan, Nuno Vasconcelos, Gert R. G. Lanck...
Dimension reduction is popular for learning predictive models in high-dimensional spaces. It can highlight the relevant part of the feature space and avoid the curse of dimensiona...