Mining cluster evolution from multiple correlated time-varying text corpora is important in exploratory text analytics. In this paper, we propose an approach called evolutionary h...
The problem of tracking a varying number of non-rigid objects has two major difficulties. First, the observation models and target distributions can be highly non-linear and non-Ga...
Kenji Okuma, Ali Taleghani, Nando de Freitas, Jame...
In this paper, we address the problem of robustly recovering several instances of a curve model from a single noisy data set with outliers. Using M-estimators revisited in a Lagran...
Jean-Philippe Tarel, Pierre Charbonnier, Sio-Song ...
We present a principled Bayesian framework for modeling partial memberships of data points to clusters. Unlike a standard mixture model which assumes that each data point belongs ...
Katherine A. Heller, Sinead Williamson, Zoubin Gha...
The K-Means and EM algorithms are popular in clustering and mixture modeling due to their simplicity and ease of implementation. However, they have several significant limitations...