Background: Determining whether a gene is differentially expressed in two different samples remains an important statistical problem. Prior work in this area has featured the use ...
Background: The incorporation of statistical models that account for experimental variability provides a necessary framework for the interpretation of microarray data. A robust ex...
Kevin A. Greer, Matthew R. McReynolds, Heddwen L. ...
In the last decade, recurrent neural networks (RNNs) have attracted more efforts in inferring genetic regulatory networks (GRNs), using time series gene expression data from micro...
Rui Xu, Ganesh K. Venayagamoorthy, Donald C. Wunsc...
Background: The accurate detection of differentially expressed (DE) genes has become a central task in microarray analysis. Unfortunately, the noise level and experimental variabi...
Background: A major goal of cancer research is to identify discrete biomarkers that specifically characterize a given malignancy. These markers are useful in diagnosis, may identi...
Virginie M. Aris, Michael J. Cody, Jeff Cheng, Jam...