Recent work on Conditional Random Fields (CRFs) has demonstrated the need for regularisation when applying these models to real-world NLP data sets. Conventional approaches to regu...
In this paper, we integrate type-2 (T2) fuzzy sets with Markov random fields (MRFs) referred to as T2 FMRFs, which may handle both fuzziness and randomness in the structural patter...
We propose a framework for intensity-based registration of images by linear transformations, based on a discrete Markov Random Field (MRF) formulation. Here, the challenge arises ...
Darko Zikic, Ben Glocker, Oliver Kutter, Martin Gr...
Learning probabilistic graphical models from high-dimensional datasets is a computationally challenging task. In many interesting applications, the domain dimensionality is such a...
In this paper we propose an extension to the standard Markov Random Field (MRF) model in order to handle layers. Our extension, which we call a Factorial MRF (FMRF), is analogous t...