Linear techniques are widely used to reduce the dimension of image representation spaces in applications such as image indexing and object recognition. Optimal Component Analysis ...
Yiming Wu, Xiuwen Liu, Washington Mio, Kyle A. Gal...
We present a hybrid and parallel system based on artificial neural networks for a face invariant classifier and general pattern recognition problems. A set of face features is ext...
Peter V. Bazanov, Tae-Kyun Kim, Seok-Cheol Kee, Sa...
Given a sample covariance matrix, we examine the problem of maximizing the variance explained by a particular linear combination of the input variables while constraining the numb...
Alexandre d'Aspremont, Francis R. Bach, Laurent El...
Principal component analysis (PCA) minimizes the sum of squared errors (L2-norm) and is sensitive to the presence of outliers. We propose a rotational invariant L1-norm PCA (R1-PC...
Chris H. Q. Ding, Ding Zhou, Xiaofeng He, Hongyuan...
In this paper, we present a mixture Principal Component Analysis (mPCA)-based approach for voxel level quantification of dynamic positron emission tomography (PET) data in brain s...