It has long been known that lateral inhibition in neural networks can lead to a winner-take-all competition, so that only a single neuron is active at a steady state. Here we show...
Xiaohui Xie, Richard H. R. Hahnloser, H. Sebastian...
We present an approach for recognition and clustering of spatio temporal patterns based on networks of spiking neurons with active dendrites and dynamic synapses. We introduce a n...
We propose a class of Bayesian networks appropriate for structured prediction problems where the Bayesian network's model structure is a function of the predicted output stru...
This paper presents a biologically-inspired, hardware-realisable spiking neuron model, which we call the Temporal Noisy-Leaky Integrator (TNLI). The dynamic applications of the mo...
Chris Christodoulou, Guido Bugmann, Trevor G. Clar...
Abstract— The need for efficient monitoring of spatiotemporal dynamics in large environmental surveillance applications motivates the use of robotic sensors to achieve sufficie...
Amarjeet Singh 0003, Fabio Ramos, Hugh D. Whyte, W...