We propose a new multiple instance learning (MIL) algorithm to learn image categories. Unlike existing MIL algorithms, in which the individual instances in a bag are assumed to be...
Guo-Jun Qi, Xian-Sheng Hua, Yong Rui, Tao Mei, Jin...
Abstract--Kernel-based algorithms such as support vector machines have achieved considerable success in various problems in batch setting, where all of the training data is availab...
Jyrki Kivinen, Alex J. Smola, Robert C. Williamson
We introduce a new algorithm for binary classification in the selective sampling protocol. Our algorithm uses Regularized Least Squares (RLS) as base classifier, and for this reas...
For more than thirty years, the parallel programming community has used the dependence graph as the main abstraction for reasoning about and exploiting parallelism in “regularâ€...
Keshav Pingali, Donald Nguyen, Milind Kulkarni, Ma...
Much recent research has been devoted to learning algorithms for deep architectures such as Deep Belief Networks and stacks of auto-encoder variants, with impressive results obtai...
Dumitru Erhan, Yoshua Bengio, Aaron C. Courville, ...