The exploration of multidimensional scalar fields is commonly based on the knowledge of the topology of their isosurfaces. The latter is established through the analysis of critic...
Dimensionality reduction is a statistical tool commonly used to map high-dimensional data into lower a dimensionality. The transformed data is typically more suitable for regressi...
Bill Kapralos, Nathan Mekuz, Agnieszka Kopinska, S...
We focus on characterizing spatial region data when distinct classes of structural patterns are present. We propose a novel statistical approach based on a supervised framework for...
Despina Kontos, Vasileios Megalooikonomou, Marc J....
“The curse of dimensionality” is pertinent to many learning algorithms, and it denotes the drastic raise of computational complexity and classification error in high dimension...
Mykola Pechenizkiy, Seppo Puuronen, Alexey Tsymbal
In this paper we propose a novel method for learning a Mahalanobis distance measure to be used in the KNN classification algorithm. The algorithm directly maximizes a stochastic v...
Jacob Goldberger, Sam T. Roweis, Geoffrey E. Hinto...