Most clustering algorithms produce a single clustering for a given data set even when the data can be clustered naturally in multiple ways. In this paper, we address the difficult...
In this paper we propose a new criterion, based on Minimum Description Length (MDL), to estimate an optimal number of clusters. This criterion, called Kernel MDL (KMDL), is particu...
Ivan O. Kyrgyzov, Olexiy O. Kyrgyzov, Henri Ma&ici...
We propose the hierarchical Dirichlet process (HDP), a nonparametric Bayesian model for clustering problems involving multiple groups of data. Each group of data is modeled with a...
Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, ...
In this paper we focus on an interpretation of Gaussian radial basis functions (GRBF) which motivates extensions and learning strategies. Specifically, we show that GRBF regressio...
Variable selection for cluster analysis is a difficult problem. The difficulty originates not only from the lack of class information but also the fact that high-dimensional data ...
Leonard K. M. Poon, Nevin Lianwen Zhang, Tao Chen,...