Sciweavers

19 search results - page 1 / 4
» Non-sparse Multiple Kernel Learning for Fisher Discriminant ...
Sort
View
ICDM
2009
IEEE
174views Data Mining» more  ICDM 2009»
15 years 4 months ago
Non-sparse Multiple Kernel Learning for Fisher Discriminant Analysis
—We consider the problem of learning a linear combination of pre-specified kernel matrices in the Fisher discriminant analysis setting. Existing methods for such a task impose a...
Fei Yan, Josef Kittler, Krystian Mikolajczyk, Muha...
ICML
2006
IEEE
15 years 10 months ago
Optimal kernel selection in Kernel Fisher discriminant analysis
In Kernel Fisher discriminant analysis (KFDA), we carry out Fisher linear discriminant analysis in a high dimensional feature space defined implicitly by a kernel. The performance...
Seung-Jean Kim, Alessandro Magnani, Stephen P. Boy...
IBPRIA
2007
Springer
15 years 3 months ago
Parsimonious Kernel Fisher Discrimination
Abstract. By applying recent results in optimization transfer, a new algorithm for kernel Fisher Discriminant Analysis is provided that makes use of a non-smooth penalty on the coe...
Kitsuchart Pasupa, Robert F. Harrison, Peter Wille...
CVPR
2005
IEEE
15 years 11 months ago
Coupled Kernel-Based Subspace Learning
It was prescriptive that an image matrix was transformed into a vector before the kernel-based subspace learning. In this paper, we take the Kernel Discriminant Analysis (KDA) alg...
Shuicheng Yan, Dong Xu, Lei Zhang, Benyu Zhang, Ho...
ICMLC
2010
Springer
14 years 8 months ago
Multiple kernel learning and feature space denoising
We review a multiple kernel learning (MKL) technique called p regularised multiple kernel Fisher discriminant analysis (MK-FDA), and investigate the effect of feature space denois...
Fei Yan, Josef Kittler, Krystian Mikolajczyk