With very noisy data, having plentiful samples eliminates overfitting in nonlinear regression, but not in nonlinear principal component analysis (NLPCA). To overcome this problem...
A novel kernel discriminant transformation (KDT) algorithm based on the concept of canonical differences is presented for automatic face recognition applications. For each individu...
Wen-Sheng Vincent Chu, Ju-Chin Chen, Jenn-Jier Jam...
Abstract. We present a method for learning feature descriptors using multiple images, motivated by the problems of mobile robot navigation and localization. The technique uses the ...
Jason Meltzer, Ming-Hsuan Yang, Rakesh Gupta, Stef...
The null space of the within-class scatter matrix is found to express most discriminative information for the small sample size problem (SSSP). The null space-based LDA takes full ...
In this paper, a multilinear formulation of the popular Principal Component Analysis (PCA) is proposed, named as multilinear PCA (MPCA), where the input can be not only vectors, b...
Anastasios N. Venetsanopoulos, Haiping Lu, Konstan...