Sciweavers

187 search results - page 11 / 38
» Nonlinear Component Analysis as a Kernel Eigenvalue Problem
Sort
View
IJCNN
2006
IEEE
15 years 5 months ago
Nonlinear principal component analysis of noisy data
With very noisy data, having plentiful samples eliminates overfitting in nonlinear regression, but not in nonlinear principal component analysis (NLPCA). To overcome this problem...
William W. Hsieh
ACCV
2007
Springer
15 years 5 months ago
Kernel Discriminant Analysis Based on Canonical Differences for Face Recognition in Image Sets
A novel kernel discriminant transformation (KDT) algorithm based on the concept of canonical differences is presented for automatic face recognition applications. For each individu...
Wen-Sheng Vincent Chu, Ju-Chin Chen, Jenn-Jier Jam...
ECCV
2004
Springer
16 years 1 months ago
Multiple View Feature Descriptors from Image Sequences via Kernel Principal Component Analysis
Abstract. We present a method for learning feature descriptors using multiple images, motivated by the problems of mobile robot navigation and localization. The technique uses the ...
Jason Meltzer, Ming-Hsuan Yang, Rakesh Gupta, Stef...
ECCV
2004
Springer
15 years 5 months ago
Null Space Approach of Fisher Discriminant Analysis for Face Recognition
The null space of the within-class scatter matrix is found to express most discriminative information for the small sample size problem (SSSP). The null space-based LDA takes full ...
Wei Liu, Yunhong Wang, Stan Z. Li, Tieniu Tan
ICPR
2006
IEEE
16 years 21 days ago
Multilinear Principal Component Analysis of Tensor Objects for Recognition
In this paper, a multilinear formulation of the popular Principal Component Analysis (PCA) is proposed, named as multilinear PCA (MPCA), where the input can be not only vectors, b...
Anastasios N. Venetsanopoulos, Haiping Lu, Konstan...