Accurately evaluating statistical independence among random variables is a key element of Independent Component Analysis (ICA). In this paper, we employ a squared-loss variant of ...
Background: Most genomic data have ultra-high dimensions with more than 10,000 genes (probes). Regularization methods with L1 and Lp penalty have been extensively studied in survi...
Zhenqiu Liu, Dechang Chen, Ming Tan, Feng Jiang, R...
It is well-known that supervised learning techniques such as linear discriminant analysis (LDA) often suffer from the so called small sample size problem when apply to solve face ...
Jie Wang, Konstantinos N. Plataniotis, Anastasios ...
Eigenvalue problems are rampant in machine learning and statistics and appear in the context of classification, dimensionality reduction, etc. In this paper, we consider a cardina...
Bharath K. Sriperumbudur, David A. Torres, Gert R....
There are many situations in which we have more than one view of a single data source, or in which we have multiple sources of data that are aligned. We would like to be able to bu...