Abstract. This paper present a new approach for the analysis of gene expression, by extracting a Markov Chain from trained Recurrent Neural Networks (RNNs). A lot of microarray dat...
Igor Lorenzato Almeida, Denise Regina Pechmann Sim...
In this paper we address the problem of learning the structure of a Bayesian network in domains with continuous variables. This task requires a procedure for comparing different c...
—We consider a widely applicable model of resource allocation where two sequences of events are coupled: on a continuous time axis (t), network dynamics evolve over time. On a di...
Alexandre Proutiere, Yung Yi, Tian Lan, Mung Chian...
—This paper studies a network under TCP congestion control, in which the number of flows per user is explicitly taken into account. We present a control law for this variable th...
Deep belief networks are a powerful way to model complex probability distributions. However, it is difficult to learn the structure of a belief network, particularly one with hidd...
Ryan Prescott Adams, Hanna M. Wallach, Zoubin Ghah...