Sciweavers

80 search results - page 1 / 16
» O-Cluster: Scalable Clustering of Large High Dimensional Dat...
Sort
View
ICDM
2002
IEEE
159views Data Mining» more  ICDM 2002»
15 years 2 months ago
O-Cluster: Scalable Clustering of Large High Dimensional Data Sets
Clustering large data sets of high dimensionality has always been a serious challenge for clustering algorithms. Many recently developed clustering algorithms have attempted to ad...
Boriana L. Milenova, Marcos M. Campos
CIDM
2007
IEEE
15 years 3 months ago
Scalable Clustering for Large High-Dimensional Data Based on Data Summarization
Clustering large data sets with high dimensionality is a challenging data-mining task. This paper presents a framework to perform such a task efficiently. It is based on the notio...
Ying Lai, Ratko Orlandic, Wai Gen Yee, Sachin Kulk...
KDD
2001
ACM
253views Data Mining» more  KDD 2001»
15 years 9 months ago
GESS: a scalable similarity-join algorithm for mining large data sets in high dimensional spaces
The similarity join is an important operation for mining high-dimensional feature spaces. Given two data sets, the similarity join computes all tuples (x, y) that are within a dis...
Jens-Peter Dittrich, Bernhard Seeger
87
Voted
SIGMOD
1998
ACM
233views Database» more  SIGMOD 1998»
15 years 1 months ago
Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications
Data mining applications place special requirements on clustering algorithms including: the ability to nd clusters embedded in subspaces of high dimensional data, scalability, end...
Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopul...
ICPP
2000
IEEE
15 years 1 months ago
A Scalable Parallel Subspace Clustering Algorithm for Massive Data Sets
Clustering is a data mining problem which finds dense regions in a sparse multi-dimensional data set. The attribute values and ranges of these regions characterize the clusters. ...
Harsha S. Nagesh, Sanjay Goil, Alok N. Choudhary